
 

 

Abstract 

According to the World Health organization, heart disease has remained the leading cause of 

death in the world for the past 18 years. In 2016, there are 10 million deaths due to heart disease 

worldwide. Early detection of heart disease would greatly increase the chances for more 

successful treatments. Thus, with the goal of developing a sound prediction model for heart 

disease, our team employed machine learning methods on a dataset consisting of data from heart 

disease patients at the Cleveland Clinic Foundation. Our team applied three types of feature 

selection and engineering techniques on the dataset and later performed modeling using seven 

classification algorithms – logistic regression, gradient boosting, support vector machine, random 

forest and naïve bayes. Upon analyzing the experimental results, it turned out that the Naïve 

Bayes classification model seems to be a good predictor of heart disease.  
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I. Background 

Our group analyzed the Heart Disease dataset from Driven Data.  The dataset consists of 270 

patient records.  Each patient record has 14 attributes.  The 14 attributes are health and heart-

related data points that provide context to the overall patient’s diagnosis.  Each patient is 

diagnosed with the presence or absence of heart disease, which is the target variable in this 

dataset.  As a team we identified that the goal of this project was to work with and use all of the 

data provided to run classification machine learning algorithms to predict the target variable, 

heart disease.  With the use of the 13 other attributes provided in the dataset, our team has 

sought to predict and better understand what specific data points and classification models work 

best to predict heart disease.  Our team has applied six different machine learning classification 

model algorithms to the dataset to identify and predict what variables and models can best predict 

the presence of heart disease. 

II. Hypothesis  

Before we begin manipulating the data by cleansing, visualizing, or classification model work, we 

want to put forward a hypothesis about the data.  After analyzing and making sense of the 14 

different attributes in the dataset, it appears that some attributes may be more insightful than 

others for predicting the target variable.  Our team concluded that the attributes: age, chest pain, 

blood pressure, and cholesterol may be some of the most insightful data points that will build 

robust predictions as to whether or not a patient has heart disease.   

Although the data points captured in the dataset did allow for some interesting analysis that we 

could glean insights from, there were several attributes that we thought were lacking from the 

dataset.  According to research published by the Oxford Academy in 2013 indicated that tobacco 

is highly correlated with cardiovascular issues (Rigotti, 2013).  Therefore, we think it would have 

been valuable to have this data point as an attribute in the dataset.   Some other data points we 

would have liked to have had in the dataset were the weight, height, and/or BM of each patient, 

as other studies, such as the one conducted by Harvard Medical School by Kelly Bilodeau, has 

indicated that these factors are also highly correlated with heart disease (Bilodeau, 2018).  

Regardless, the data points provided were sufficient for performing a deep analysis of the dataset.  

It is a well-known fact that heart disease is the number one cause of death in America; according 

to the CDC and their 2016 Leading Cause of Death Report, heart disease topped the charts 

beating out all types of cancers combined as the leading cause of death in America.  Based on 

some underlying assumptions, there are 2 main and common reasons for death old age and 

excessively unhealthy habits.  From these two assumptions, our hypothesis is that age and high 

cholesterol will be the two main indicators and drivers for predicting our target variable.  

 

https://www.cdc.gov/nchs/data/nvsr/nvsr67/nvsr67_06.pdf


 

 

III. Methodology 

Importing, Viewing and Cleaning the Data 

The raw data found on drivendata.org is in .dat format rather than in csv format.  Rather than 

converting this dataset to a csv file using Excel, we decided to prep the data entirely using python.  

To do so, we imported the file using Panda's read_csv function and separate each column with a 

space delimiter. Since the original .dat file does not contain easily understandable column 

headings, we assigned them manually in order to easily understand our data in order and have 

included markups of what they are and how they are interpreted. 

Once the data had been imported into the Jupyter Notebook, visualizing the data became the 

initial step to begin making sense of the scope of the raw data.  The decision to visualize the 

newly imported data is necessary to gain some preliminary insights of the data.  Pandas, 

Matplotlib, and Seaborn are the packages commonly used to bring the tabular data to life by 

presenting the data in the form of graphs and other visualization methods.  Prior to creating any 

detailed or robust visualizations it is important to first draw insights from the data using some 

tools that provide a general summary of each of the collected data points.   

A good first step in performing this analysis is the .describe line of code.  This simple line of code 

analyzes the data by verifying the number of collected data points for each row, as well as 

provides a cursory view of the mean, standard deviation, minimum and maximum values for each 

column of data. 

Once this analysis has been performed it is helpful to identify the type of values in the data set 

as well as analyzing if the dataset has any null values.  A simple line of code that allows one to 

easily perform this analysis is .info(). This will provide an analysis of the type of data stored in 

each of your columns as well as indicate how many null values are in each column.  Fortunately, 

the heart Disease dataset did not have any null values stored in any of the columns, and the 

types were all floats or integers which will increase our data processing abilities.    

Next, the first real visualization was employed which was a histogram.  The use of histograms 

easily show the distribution of collected data.  We plotted each column into a histogram because 

every column was either made up of integers or floats, which both easily plot a onto a histogram.  

By plotting a histogram you can easily determine which variables are binomial or polynomial, 

which will then provide insight into how you drive further data analysis. 

 

https://www.drivendata.org/accounts/login/?next=/competitions/54/machine-learning-with-a-heart/data/


 

 

 

Figure 1. Histograms of 14 features of heart disease dataset 

After analyzing the distribution of each variable we sought to see how these variables were 

correlated with each other by the use of a correlation matrix.  By running a correlation matrix of 

the data we can see what attributes are higher indicators of predicting whether or not the patient 

has heart disease.  A correlation matrix helps indicate what variables are more highly correlated 

with other variables.  Correlation Matrices are great for exploring and understanding the data 

relationships.  The matrix indicates that the following variables are correlated with our target 

variable which is the presence or absence of heart disease: ‘chest_pain_type', 

'max_heart_rate_achieved', 'exercise_induced_angina', 'st_depression', 'num_major_vessels', 

and 'thalassemia' are our best indicators of heart disease. 

 



 

 

In order to gain insight into the target variable and dive deeper into the classification analysis, it 

is important to understand the target variable and see what the distribution of that specific 

variable is.  As used before in the initial visual analysis, a histogram is one of the clearest ways 

to see the distribution of a binomial variable.  Visualizing the target variable with a histogram was 

used to isolate this variable and see the distribution of the patient diagnosis in the data set.  The 

target variable is represented by a binary variable where 1 is a negative diagnosis and 2 

represents a positive diagnosis. 

 

 
Figure 2. Histogram of target variable 

 

The distribution is not perfectly equal, but there is a substantial population of each diagnosis that 

will help drive toward a classification prediction.  In regard to the sample, we wanted to see if 

there were other influential binominal attributes that could skew the data one way or another.  

The variable that was most noticeable that could influence this was sex.  Based on the initial 

histogram it is noticeable that sex is not an evenly distributed variable across the dataset.  This 

is one variable that was worth exploring and seeing how this might affect our analysis and 

classification models.  We found that the distribution of sex was a two-thirds to one-third split, 

heavily favoring males: 

 

 

Figure 3. Distribution of sex in the heart disease dataset 

  



 

 

This finding was alarming as we feared this sample data would provide a biased view toward 
predicting heart disease in male rather than females.  However, this imbalance was mitigated 
once we dove slightly deeper into how this variable was distributed.  As it turns out the distribution 
of heart disease was more evenly distributed among males and females as is indicated by the 
distribution of the blue bar. 

 

Figure 4. Sex and target variable distributions 

A finding from the correlation table that we have generated earlier on, thalassemia was the 

highest correlated attribute with our target variable.  This specific variable was interesting to 

discover that it correlated highly with heart disease since no one in the five-person group has 

heard of this before.  This drove us to research what this variable was.  What was discovered is 

that thalassemia is a hereditary blood disorder by which one’s red blood cells circulate less oxygen 

throughout one's body than the body needs.  This is disorder is determined by a blood test 

(National Human Genome Research Institute).  This research provided another insight into our 

data as this indicated that all the patients have had blood work performed.  150 patients did not 

have heart disease in our dataset. When we compare that with the 152 patients whose 

thalassemia is normal, this drove us to suspect that this variable may be one that drives the 

accuracy of our classification algorithms. This variable is one that we hope to gain insight into is 

whether or not there is a meaningful overlap in these two numbers.  

Feature Selection 

After cleaning and exploring the data, we continue our data preparation with feature selection. 

Feature selection is essentially a task to remove unnecessary features. One of the primary 

motivations for feature selection is the curse of dimensionality (Liu & Motoda 2014). Feature 

selection effectively reduces the hypothesis space by removing redundant and irrelevant features. 

The smaller the space, the easier it is to find correct hypotheses. 



 

 

There are many tangible benefits when feature selection is performed correctly, such as an 

improvement of the inductive learner, either in terms of learning speed, generalization capacity 

or simplicity of the induced model (Bolón-Canedo & Alonso-Betanzos 2018). 

There is a variety of feature selection taxonomies; two wildly accepted ones are (1) filter, wrapper 

and embedded, and (2) multivariate and univariate (Ni 2012). For our python project, we decided 

to cover a range of these selection methods – (i) Selection using Correlation Matrix, (ii) Univariate 

Selection; (iii) Feature Importance. We have examined Correlation Matrix, a filter technique, in 

an earlier section, thus we will be focusing on the other two methods. 

Univariate Selection 

Univariate feature selection techniques assess the discriminative power of each feature 

individually by evaluating, pairwise, the dependency between response and each feature based 

on specific metric (Ni 2012). This method is mainly employed in tackling the extremely high-

dimensional dataset because of its speed and cost-effectiveness. The univariate selection 

technique that we have chosen to apply is a Chi-Square test. The chi-square test examines the 

difference between expected and observed distributions. We chose this as it works well on 

categorical variables (Weaver, Morales, Dunn, Godde, Weaver 2017). 

Chi-Square Test: 

 

We specify our number of features as 10, denoted by k=10, to analyze the top 10 features based 

on their chi-square score. We identified max_heart_rate, num_major_vessels, thalassemia, and 

st_depression as some of the top features in our dataset. 

 

Figure 5. Top 4 features selected by Chi-Square  



 

 

Feature Importance 

The Correlation Matrix and Chi-Square test are filter techniques that measure the relevance of 

features by their correlation, either linearly or using a frequency distribution, with a dependent 

variable. Feature Importance, on the other hand, is a wrapper method that measure the 

usefulness of a subset of feature by actually training a model on it. 

In Python, Feature Importance is a common inbuilt class that comes with Tree Based Classifier, 

making it an embedded technique. A score is given to each feature, the higher the score, the 

more important or useful the feature is to the output model. Using this method, we define a 

model with 100 trees and run feature importance on our independent variables. We then plotted 

the result of the top 10 features (based on their scores) on a bar chart. 

 

Figure 6. Top 10 features (based on their scores) selected by Feature Importance 

 

Feature Engineering 

Another pre-modeling preparation that we have applied is Feature Engineering. Feature 

engineering is an act of extracting features from raw data and transforming them into formats 

that are suitable for the machine learning model (Zheng & Casari 2018). There is a multitude of 

feature engineering techniques. The feature selection that we have chosen is an encoding 

technique. There are three ways of encoding, namely one-hot, dummy, and effect coding. We 

used one-hot encoding in our project. 

According to Zheng & Casari’s Feature Engineering for Machine Learning: Principles and 

Techniques for Data Scientists (2018): 

“One-hot encoding is redundant, which allows for multiple valid models for the same 

problem. The non-uniqueness is sometimes problematic for interpretation, but the 

advantage is that each feature clearly corresponds to a category.” 



 

 

Although we do not have missing data in our project, they can be encoded as the all-zeros vector, 

and the output would be the overall mean of the target variable. 

The pandas.get_dummies function helps us convert categorical variables into dummy/indicator 

variables. The resulting shape of our engineered dataset as we print it shows that 15 new 

(dummy) variables have been generated. Prior to creating dummy variables, we ran all our 

machine learning models and recorded their performances (i.e. accuracy, precision, and recall). 

With feature engineering, we observed an overall improvement (ranging 1 - 5%) in performances 

throughout all models. 

Modeling: Machine Learning Algorithms 

In machine learning, an algorithm or method extracts patterns from data to help us solve 

problems. These are problems that machine learning can solve: 

 

Figure 7: The problems that machine learning can solve. Source: Kirk, M. (2017). 

Our project is a case of supervised learning. The table below summarizes some of the supervised 

type algorithms that are widely adopted. For our modeling stage, we have chosen to apply and 

evaluate 7 ML algorithms: K-Nearest Neighbors (KNN), Logistic Regression, Gradient Boosting, 

Support Vector Machine (SVM), Decision Tree, Random Forest, and Naive Bayes. 

 

Figure 8: Machine learning algorithm matrix. Source: Kirk, M. (2017). 



 

 

I. K-Nearest Neighbor (KNN) 

KNN is a typical example of a lazy learner, not because of its apparent simplicity, but because it 

does not learn a discriminative function from the training data; instead, it memorizes the training 

dataset (Raschka 2015). 

The algorithm is straightforward. Traditionally, we first choose the number of k and a distance 

metric. We then find the k nearest neighbors of the sample we want to classify. Finally, we assign 

a class label by majority vote. In our python project, we started with an arbitrary k value of 10 

and scored the model based on accuracy. This returns an accuracy of 66.7%. 

Using a re-iteration method by defining a range between 1 and 100 for k, we plotted a graph that 

shows us the accuracy given this range of k values. We identified that at k=22, the highest 

accuracy score is obtained 

 

Figure 9. K-Value accuracy score graph 

 

 

  



 

 

Cross Validation 

The most basic modeling methodology is arguably one developed on train data and evaluated 

on test data (i.e. train-test split). In this scenario, there is a chance that train and test might 

not have been homogeneously selected, resulting in extreme cases that might appear in the 

test data, reducing performance (Dangeti 2017). 

To overcome this problem, we use a cross-validation technique that ensures robustness in the 

model (at the expense of computation). In cross-validation, data is divided into equal parts and 

training performed on all the other parts of the data except one part, on which performance is 

evaluated. This process is repeated as many parts (i.e. folds) as a user has chosen. 

According to Russell & Cohn’s Cross Validation (2012): 

“One round of cross-validation involves partitioning a sample of data into complementary 

subsets, performing the analysis on one subset (called the training set), and validating 

the analysis on the other subset (called the validation set or testing set). To reduce 

variability, multiple rounds of cross-validation are performed using different partitions, and 

the validation results are averaged over the rounds.” 

An industrial norm for the number of folds is 10 (Kuhn & Johnson 2013). This is the value that 

we have defined for our number of cross-validation folds in our KNN algorithm, and subsequently 

tested on our other models: logistic regression, gradient boosting, support vector machine, 

random forest and naive bayes. 

II. Logistic Regression 

Logistic regression is one of the most used statistical procedures employed by statisticians and 

researchers for the analysis of binary and proportional response data (Hilbe 2009). This is why 

we have decided to use it on our largely binary/polynomial dataset. True enough, logistic 

regression performed relatively well: 

 



 

 

There is a wide range of statistical methods in logistic regression, many software packages have 

different variations of executing logistic regression. We used a package imported from 

sklearn.linear_model. This class implements a regularized logistic regression using the ‘liblinear’ 

library, ‘newton-cg’, ‘sag’, ‘saga’ and ‘lbfgs’ solvers by default. 

III. Gradient Boosting 

Gradient boosting (GB) is a competition-winning algorithm that works on the principle of boosting 

weak learners iteratively by shifting focus towards problematic observations that were difficult to 

predict in previous iterations and performing an ensemble of weak learners, typically decision 

trees (Dangeti 2017).   

According to Dangeti (2017), gradient boosting involves three elements:  

1. Loss function to be optimized. In boosting, at each stage, unexplained loss from prior 

iterations will be optimized rather than starting from scratch.  

2. Weak learner to make predictions: Decision trees are used as a week learner. 

3. Addictive model to add weak learners to minimize the loss function: Trees are added one 

at at time and existing trees in the model are not changed. The gradient descent 

procedure is used to minimize the loss when adding trees. 

For our model, we defined the value of “loss” to be “exponential”, with a “learning rate” of 0.03, 

this shrinks the contribution of each tree by 0.03. We set the number of boosting stages to 75. 

Since gradient boosting is fairly robust to overfitting; a large number usually results in better 

performance. Finally, we set the maximum depth, which limits the number of nodes in the tree, 

to be 6.  

  



 

 

IV. Support Vector Machine (SVM) 

SVM is a powerful supervised machine learning algorithm (Chang & Lin 2011). This model 

achieved the highest recall rate (98%) out of all our models. We observed accuracy and precision 

scores to be relatively low. To improve the accuracy score, we feature engineered our SVM by 

applying feature scaling, a tool especially useful on SVM (Juszczak, Tax, & Duin 2002), on six 

variables – age, blood pressure, cholesterol, maximum heart rate, and st depression. Feature 

scaling normalizes the range of these independent variables of data.  

 

After applying feature scaling, we ran the model with an initial cross-validation of 10-folds; 

however, we realized that 5-folds produced better performance. With feature scaling, the 

performance of SVM improved significantly.  

This encouraged us to explore other means of data manipulation. We implemented chi-square 

feature selection and ran results from percentiles ranging from 1 to 100 searching for all accuracy 

and recall values greater than their mean values. We noticed that the highest accuracy score is 

at the 63rd percentile of our Chi-square statistic. Overall, performance has improved. Since Chi-

square is a univariate selection method that selects features with the strongest relationship to 

the target; in this experiment, 18 of the original 28 features were used.  

  



 

 

 

Figure 10. Highest Recall and Accuracy Score after Applying Feature Selection and Chi-Square Statistics 

V. Decision Tree 

The decision tree classifier is a simple, yet effective machine learning algorithm (Banfield, Hall, 

Bowyer, & Kegelmeyer 2006) as it performs classification without requiring much computation. It 

helps us to calculate possible consequences such as chance event outcomes. We split our data 

70-30 (i.e. 70% trained, 30% tested). Here’s our result:  

 

We were interested in seeing how changing the train-test split ratio to 80-20 would affect the 

score results as it feeds more data to the training set. Based on the results below, it appears a 

80-20 split generated an overall better performance than the 70-30 split. 

  



 

 

VI. Random Forest 

Random Forest is an ensemble of decision trees, essentially creating a “forest” with randomly 

chosen subsets of features. We defined 100 trees in our parameters and ran two experiments: 

(i) 80-20 train-test split; (ii) cross validation of 10-folds.  

 

Surprisingly, the 80-20 split had a slightly better overall performance. This was against our 

expectation that cross validation would process data better in all aspects, apparently, this was 

not the case. It is important, however, to note that cross validation yield better precision. 

  



 

 

VII. Naive Bayes 

Naive Bayes is adopted from Bayesian’ theorem and a family of algorithms that shares a common 

principle in which every pair of features being classified is independent of each other. Naive Bayes 

is an effective tool in data mining (Kim, Han, Rim, & Myaeng 2006). We used Naive Bayes classifier 

because the parameters were estimated using maximum likelihood. Just like the other models, 

we ran train-test split ratios of 70-30 and 80-20, and a cross validation of 10-folds.  

 

 

Comparing the three results obtained, 80-20 train-test split produced the highest results in terms 

of accuracy, precision, recall, and F1 score. Recall score on 70-30 was approximately similar to 

80-20, while cross-validation of 10-folds generated uniform results (ie. most scores in the 80% 

range).  



 

 

Learnings 

Appendix I provides an overview of performances across all models in our project. Naive Bayes 

seems to be the leading contender in terms of accuracy, recall, and F1 performances, while 

Logistic Regression with cross validation of 5-folds achieved the highest precision result. 

In evaluating the different metrics of performance and relating them back to the context of 

predicting heart disease, it might be useful to examine the number of false positives and false 

negatives. Our team concluded that a model with less false negative would serve as a better 

model since there are detrimental consequences when a patient who has heart disease is 

misdiagnosed and miss treatment as a result. Therefore, a model with high recall performance 

(denoting a lower number of false negative relative to true positive) is one that we strive to 

achieve in this heart disease prediction problem.  

All in all, a large part of our project was a series of trial-and-error experimentation. There are 

three main take-aways that we would like to allude to: 

Firstly, feature selection is a great way to improve performance. By extracting only relevant 

features from the dataset, we could train our data more accurately and build a better predictive 

model.  

Secondly, feature engineering techniques such as one-hot encoding creates additional candidate 

features to choose from and use for training, while feature scaling normalizes to provide more 

compatible and comparable features. Evidently from our project, performances across the board 

improved drastically when feature selection and feature engineering methods were used. 

Lastly, we noticed that cross validation performs differently on every model. The goal of this 

technique is to avoid underfitting, overfitting, and estimate the level of fit of a model to a data 

set. While cross validation does not necessarily improve accuracy, our research has shown that it 

is a better alternative to a regular 70-30 train-test split.  

  



 

 

Appendix I: Performance Across All Models 
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